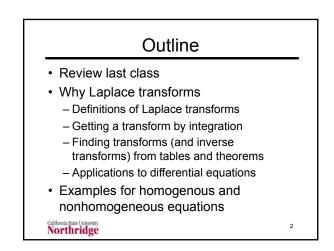
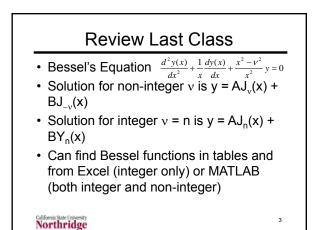


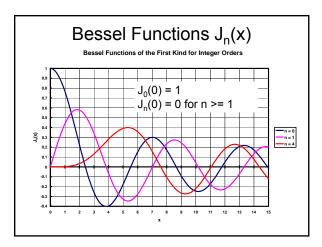
Larry Caretto Mechanical Engineering 501AB Seminar in Engineering Analysis

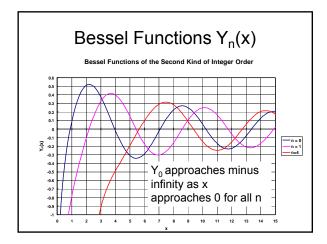
October 25, 2017

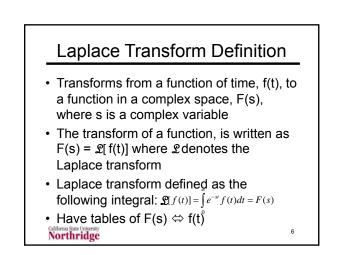
California State University Northridge



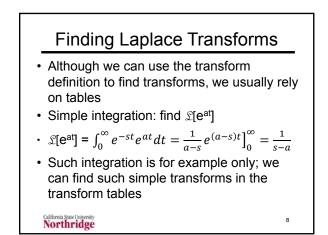








f(t)	F(s)	f(t)	F(s)	
t ⁿ	n!/s ⁿ⁺¹	e ^{at} sin ωt	ω	
t×	Г (x+1)/s ^{x+1}	1	$\overline{(s-a)^2+\omega^2}$	
e ^{at}	1/(s – a)	e ^{at} cos ot	(s-a)	
sin wt	$\omega/(s^2 + \omega^2)$	1	$\overline{(s-a)^2+\omega^2}$	
cos ωt	$s/(s^2 + \omega^2)$		Additional transforms in	
sinh ωt	$\omega/(s^2 - \omega^2)$	pp 264-267/248-251 of Kreyszig 9 th /10 th edition		
cosh wt	$s/(s^2 - \omega^2)$			



Why Laplace Transforms?

- Simplified technique for solving initial value problems (IVP)
- Use transform tables to get transforms labeled F(s) for usual functions, f(t)
 - Transforms differential equations (with t as independent variable) into algebraic equations (with s as algebraic variable) and initial condition(s)
 - Tables used to transform equations terms from f(t) to F(s) and vice versa

9

California State University Northridge

Why Laplace Transforms (cont'd) Transformed ODE in s space is

- manipulated to get only F(s) forms available in transform table
- Use transform tables to get transforms from terms in F(s) back to f(t) term
- You now have the solution!
- Simple example: find y(t) for dy/dt + ky = 0 with y(0) = a

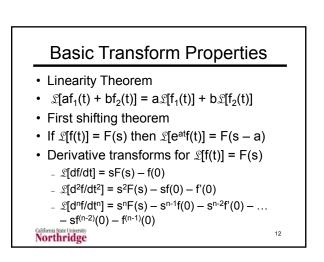
10

California State University Northridge

Simple Example

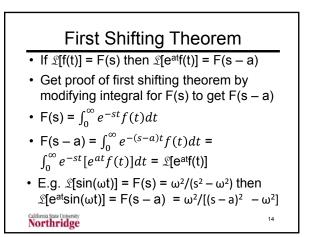
- Find y(t) for dy/dt + ky = 0
- From transform table L(dy/dt) = sY(s) y(0) and L[ky(t)] = kY(s)
- Transformed equation of dy/dt + ky = 0 is sY(s) - y(0) + kY(s) = 0
- Find Y(s) by algebra: Y(s) = y(0)/(s k)
- From transform table for Y(s) = 1/(s a), y(t) = e^{-at}, so solution is y(t) = y(0)e^{-kt}

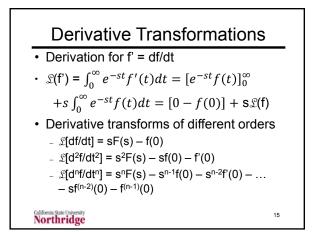
California State University Northridge

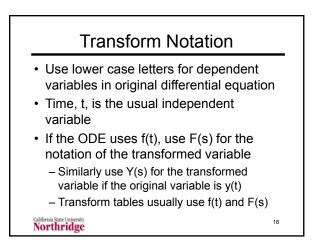


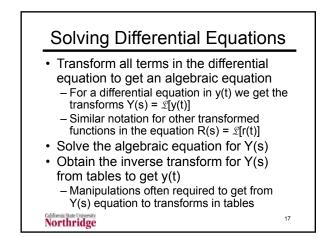
Linearity Theorem

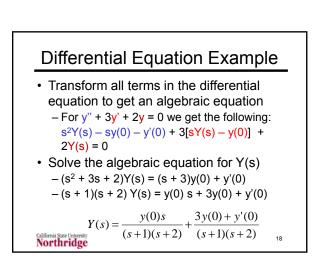
- Statement of Theorem
- $\mathfrak{L}[af_1(t) + bf_2(t)] = a\mathfrak{L}[f_1(t)] + b\mathfrak{L}[f_2(t)]$
- Proof of linearity theorem
- $\mathfrak{L}[af_1(t) + bf_2(t)] = \int_{0}^{t} e^{-st} [af_1(t) + bf_2(t)] dt$ = $a \int_{0}^{t} e^{-st} f_1(t) dt + b \int_{0}^{t} e^{-st} f_2(t) dt$ = $a \mathfrak{L}[f_1(t)] + b \mathfrak{L}[f_2(t)]$
- Importance: The Laplace transform of a ODE with constant coefficients is the sum of the transforms of all terms in the ODE
 Colored State Intervet Morthridge 13

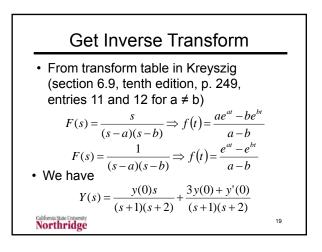


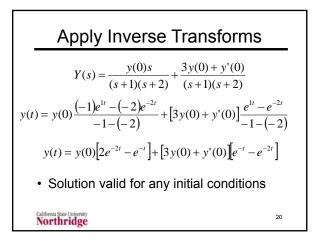


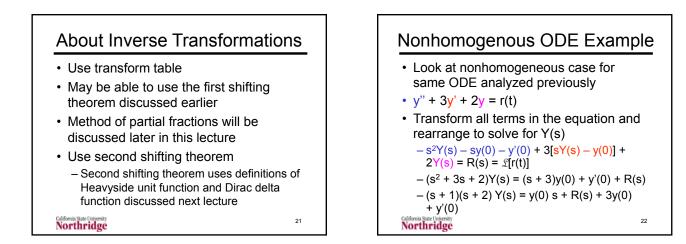


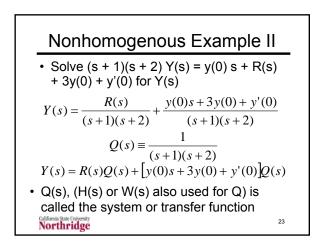


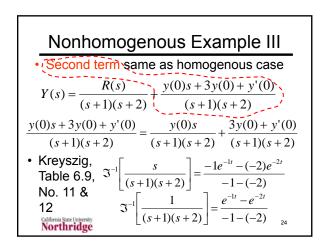


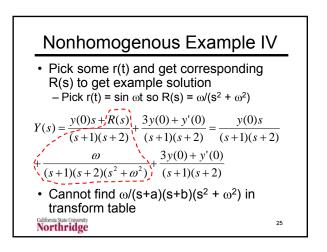


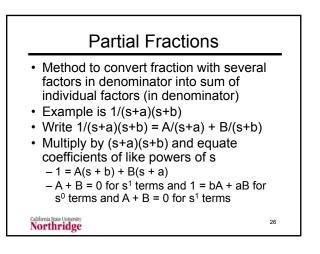


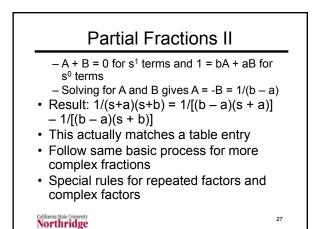


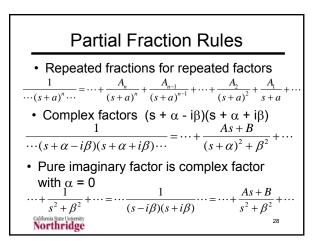


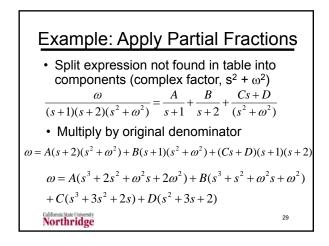


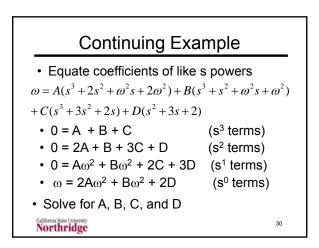












Solve for A, B, C, and D					
 Gauss elimination for augmented matrix 					
$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 3 & 1 & 0 \\ \omega^2 & \omega^2 & 2 & 3 & 0 \\ 2\omega^2 & \omega^2 & 0 & 2 & \omega \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & 2 - \omega^2 & 3 & 0 \\ 0 & -\omega^2 & -2\omega^2 & 2 & \omega \end{bmatrix}$					
$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & 2 - \omega^2 & 3 & 0 \\ 0 & 0 & -3\omega^2 & 2 - \omega^2 & \omega \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & 2 - \omega^2 & 3 & 0 \\ 0 & 0 & 0 & 2 - \omega^2 - \frac{9\omega^2}{2 - \omega^2} & \omega \end{bmatrix}$))) »				

