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Outline

• Review last class

• Why Laplace transforms
– Definitions of Laplace transforms 

– Getting a transform by integration

– Finding transforms (and inverse 
transforms) from tables and theorems

– Applications to differential equations

• Examples for homogenous and 
nonhomogeneous equations

Review Last Class

• Bessel’s Equation

• Solution for non-integer  is y = AJ(x) + 
BJ(x)

• Solution for integer  = n is y = AJn(x) + 
BYn(x)

• Can find Bessel functions in tables and 
from Excel (integer only) or MATLAB 
(both integer and non-integer)
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Bessel Functions Jn(x)
Bessel Functions of the First Kind for Integer Orders
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Bessel Functions Yn(x)
Bessel Functions of the Second Kind of Integer Order
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Laplace Transform Definition
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• Transforms from a function of time, f(t), to 
a function in a complex space, F(s), 
where s is a complex variable

• The transform of a function, is written as 
F(s) = L[ f(t)] where L denotes the 
Laplace transform 

• Laplace transform defined as the 
following integral:

• Have tables of F(s)  f(t)

L
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Simple Laplace Transforms
f(t) F(s) f(t) F(s)

tn n!/sn+1 eatsint

tx (x+1)/sx+1

eat 1/(s – a) eatcost

sint /(s2 + 2)

cost s/(s2 + 2) Additional transforms in  
pp 264-267/248-251 of 
Kreyszig 9th/10th edition

sinht /(s2 – 2)

cosht s/(s2 – 2)
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Finding Laplace Transforms
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• Although we can use the transform 
definition to find transforms, we usually rely 
on tables

• Simple integration: find L[eat] 

• L[eat] = 

• Such integration is for example only; we 
can find such simple transforms in the 
transform tables

Why Laplace Transforms?

• Simplified technique for solving initial 
value problems (IVP)

• Use transform tables to get transforms 
labeled F(s) for usual functions, f(t)
– Transforms differential equations (with t as 

independent variable) into algebraic 
equations (with s as algebraic variable) 
and initial condition(s)

– Tables used to transform equations terms 
from f(t) to F(s) and vice versa
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Why Laplace Transforms (cont’d)

• Transformed ODE in s space is 
manipulated to get only F(s) forms 
available in transform table

• Use transform tables to get transforms 
from terms in F(s) back to f(t) term

• You now have the solution!

• Simple example: find y(t) for dy/dt + ky
= 0 with y(0) = a
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Simple Example

• Find y(t) for dy/dt + ky = 0
• From transform table L(dy/dt) = sY(s) –

y(0) and L[ky(t)] = kY(s)

• Transformed equation of dy/dt + ky = 0 
is sY(s) – y(0) + kY(s) = 0

• Find Y(s) by algebra: Y(s) = y(0)/(s – k) 

• From transform table for Y(s) = 1/(s –
a), y(t) = e-at, so solution is y(t) = y(0)e-kt
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Basic Transform Properties

• Linearity Theorem
• L[af1(t) + bf2(t)] = aL[f1(t)] + bL[f2(t)]

• First shifting theorem
• If L[f(t)] = F(s) then L[eatf(t)] = F(s – a) 

• Derivative transforms for L[f(t)] = F(s)
– L[df/dt] = sF(s) – f(0)

– L[d2f/dt2] = s2F(s) – sf(0) – f’(0)

– L[dnf/dtn] = snF(s) – sn-1f(0) – sn-2f’(0) – …     
– sf(n-2)(0) – f(n-1)(0)

12
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Linearity Theorem
• Statement of Theorem
• L[af1(t) + bf2(t)] = aL[f1(t)] + bL[f2(t)] 

• Proof of linearity theorem
• L[af1(t) + bf2(t)] = 

    
 

 
0 0

21 dttfebdttfea stst = aL[f1(t)] + bL[f2(t)]

• Importance: The Laplace transform of a 
ODE with constant coefficients is the sum 
of the transforms of all terms in the ODE
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First Shifting Theorem
• If L[f(t)] = F(s) then L[eatf(t)] = F(s – a) 

• Get proof of first shifting theorem by 
modifying integral for F(s) to get F(s – a) 

• F(s) = 

• F(s – a) = = 

= L[eatf(t)]

• E.g. L[sin(ωt)] = F(s) = ω2/(s2 – ω2) then 
L[eatsin(ωt)] = F(s – a)  = ω2/[(s – a)2 – ω2] 
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Derivative Transformations
• Derivation for f’ = df/dt

• L(f’) = 

0 0 sL(f) 

• Derivative transforms of different orders
– L[df/dt] = sF(s) – f(0)

– L[d2f/dt2] = s2F(s) – sf(0) – f’(0)

– L[dnf/dtn] = snF(s) – sn-1f(0) – sn-2f’(0) – …     
– sf(n-2)(0) – f(n-1)(0)

Transform Notation

• Use lower case letters for dependent 
variables in original differential equation

• Time, t, is the usual independent 
variable

• If the ODE uses f(t), use F(s) for the 
notation of the transformed variable
– Similarly use Y(s) for the transformed 

variable if the original variable is y(t)

– Transform tables usually use f(t) and F(s)
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Solving Differential Equations
• Transform all terms in the differential 

equation to get an algebraic equation
– For a differential equation in y(t) we get the 

transforms Y(s) = L[y(t)]
– Similar notation for other transformed 

functions in the equation R(s) = L[r(t)]
• Solve the algebraic equation for Y(s)
• Obtain the inverse transform for Y(s) 

from tables to get y(t)
– Manipulations often required to get from 

Y(s) equation to transforms in tables
18

Differential Equation Example

• Transform all terms in the differential 
equation to get an algebraic equation
– For y’’ + 3y’ + 2y = 0 we get the following:

s2Y(s) – sy(0) – y’(0) + 3[sY(s) – y(0)]  +     
2Y(s) = 0

• Solve the algebraic equation for Y(s)
– (s2 + 3s + 2)Y(s) = (s + 3)y(0) + y’(0)
– (s + 1)(s + 2) Y(s) = y(0) s + 3y(0) + y’(0)
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Get Inverse Transform

• From transform table in Kreyszig 
(section 6.9, tenth edition, p. 249, 
entries 11 and 12 for a ≠ b) 
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• We have

Apply Inverse Transforms

• Solution valid for any initial conditions
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About Inverse Transformations

• Use transform table

• May be able to use the first shifting 
theorem discussed earlier

• Method of partial fractions will be 
discussed later in this lecture

• Use second shifting theorem
– Second shifting theorem uses definitions of 

Heavyside unit function and Dirac delta 
function discussed next lecture
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Nonhomogenous ODE Example

• Look at nonhomogeneous case for 
same ODE analyzed previously

• y’’ + 3y’ + 2y = r(t)
• Transform all terms in the equation and 

rearrange to solve for Y(s)
– s2Y(s) – sy(0) – y’(0) + 3[sY(s) – y(0)] + 

2Y(s) = R(s) = L[r(t)]

– (s2 + 3s + 2)Y(s) = (s + 3)y(0) + y’(0) + R(s)
– (s + 1)(s + 2) Y(s) = y(0) s + R(s) + 3y(0)             

+ y’(0)
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Nonhomogenous Example II
• Solve (s + 1)(s + 2) Y(s) = y(0) s + R(s) 

+ 3y(0) + y’(0) for Y(s)
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• Q(s), (H(s) or W(s) also used for Q) is 
called the system or transfer function
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Nonhomogenous Example III
• Second term same as homogenous case
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Nonhomogenous Example IV
• Pick some r(t) and get corresponding 

R(s) to get example solution
– Pick r(t) = sin t so R(s) = /(s2 + 2)
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• Cannot find /(s+a)(s+b)(s2 + 2) in 
transform table
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Partial Fractions
• Method to convert fraction with several 

factors in denominator into sum of 
individual factors (in denominator)

• Example is 1/(s+a)(s+b)
• Write 1/(s+a)(s+b) = A/(s+a) + B/(s+b)
• Multiply by (s+a)(s+b) and equate 

coefficients of like powers of s
– 1 = A(s + b) + B(s + a)
– A + B = 0 for s1 terms and 1 = bA + aB for 

s0 terms and A + B = 0 for s1 terms
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Partial Fractions II
– A + B = 0 for s1 terms and 1 = bA + aB for 

s0 terms
– Solving for A and B gives A = -B = 1/(b – a)

• Result: 1/(s+a)(s+b) = 1/[(b – a)(s + a)] 
– 1/[(b – a)(s + b)]

• This actually matches a table entry
• Follow same basic process for more 

complex fractions
• Special rules for repeated factors and 

complex factors

28

Partial Fraction Rules

• Repeated fractions for repeated factors 

















 



as

A

as

A

as

A

as

A

as n
n

n
n

n
1

2
2

1
1

)()()()(

1

• Complex factors  (s +  - i)(s +  + i)










 22)())((

1

 s

BAs

isis

• Pure imaginary factor is complex factor 
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Example: Apply Partial Fractions
• Split expression not found in table into 

components (complex factor, s2 + 2)
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Continuing Example

• Equate coefficients of like s powers

• 0 = A  + B + C                     (s3 terms)
• 0 = 2A + B + 3C + D           (s2 terms)
• 0 = A2 + B2 + 2C + 3D    (s1 terms)
•  = 2A2 + B2 + 2D          (s0 terms)
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• Solve for A, B, C, and D
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Solve for A, B, C, and D
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• Gauss elimination for augmented matrix
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Backsolve for A, B, C, and D
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Write Y(s) – Get Transforms
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Write Y(s) – Get Transforms II
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Laplace Transform Solution

• Usual solution starts with numerical 
values of  and initial conditions
– These numerical values simplify the result

– Solution presented here is valid for any 
and any initial conditions
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Other Applications

• We can apply this to a system of 
equations for yi(t)
– Transform all equations from yi(t) to Yi(s)

– Solve simultaneous algebraic equations for 
each Yi(s)

– Get inverse transforms for yi(t)

– Will consider systems of equations in the 
next class period


